Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Multi-scale research uncovers microbes that affect sorghum drought response
    Science

    Multi-scale research uncovers microbes that affect sorghum drought response

    By AdminSeptember 18, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Credit: Pixabay/CC0 Public Domain

    Drought is one of the greatest threats to agricultural systems, resulting in unpredictable crop yields, declines in farm revenue, and an increase in disease outbreaks. In the United States alone, drought has cost the nation $249 billion since the 1980s. One potential solution to enhancing crop resilience is the inoculation of seed with bacteria, aka. plant “probiotics” that are known to improve a plant’s drought tolerance. While scientists have identified many microbes that show promise in the lab, replicating their efficacy in agricultural field studies proves much more difficult, largely due to complex environmental variation in the real world.

    New research spearheaded by Rebecca Bart, Ph.D., Associate Member, Donald Danforth Plant Science Center, and her colleagues tackled the challenge of bridging the gap between lab and field studies related to crop-microbial interactions and their influence on drought tolerance. Their work has the potential to accelerate crop adaptation to drought conditions and streamlines findings from the lab for farmers in the field. Their seminal research was recently published in The ISME Journal and eLife.

    The authors took a systems-level approach to identify microbes that affected drought response in sorghum, work that spanned “sterile, controlled environments” in the lab, to field experiments chock full of complex soil properties, uneven topography, and nonuniform accumulation of water moisture. The team found that at least six microbes that caused root developmental defects in the lab—stunting the height of sorghum seedlings—were also negatively affecting sorghum growth in the field.

    “The big advance here,” said corresponding author Bart, “is that we observed similar patterns in a controlled environment and in the field. That result tells us that our lab observations are real and relevant to agriculture.” Strikingly, the research team also identified a new microbe that promoted root growth, a critical characteristic to improve crop resilience to drought.

    The research, which took place over the course of the last five years, was not without its own challenges. “Environmental variation makes the real world a noisy place to conduct science,” wrote first author and Danforth Center Senior Data Scientist Jeffrey Berry. The authors needed to develop a model to account for confounding biological variables in field experiments—factors like soil pH and phosphate content, which can vary wildly across a field site.

    By combining giant, multivariate datasets from collaborators across several institutions, including at University of Nebraska-Lincoln, Iowa State University, Washington State University, University of North Carolina-Chapel Hill, Colorado State University, and the Joint Genome Institute, Berry was able to use sophisticated computational models to understand and overcome variation in the field.

    The result was a first-of-its-kind statistical model that accounted for soil properties that influenced traits in both crops and microbes. The authors could now compare their results between the lab and field without worrying about how environmental variation might be altering their field observations. “Jeff figured out how to connect some really complicated puzzle pieces,” concluded Bart.

    In addition to tackling complicated statistics and collaborating with scientists across the country, part of the teams’ success was having access to the Danforth Center’s unparalleled research infrastructure. For example, the authors used The Bellwether Foundation Phenotyping Facility to visualize and quantify how drought and microbe treatments affected sorghum growth and development as part of their controlled lab experiments.

    The team is beginning to replicate their methodology in other crops systems like maize, and future research plans for this work will be housed out of the Danforth Center’s new Subterranean Influences on Nitrogen and Carbon (SINC) Center, co-directed by Bart and three other Danforth Center members.

    New research reveals mutation responsible for disease resistance in cassava More information: Mingsheng Qi et al, Identification of beneficial and detrimental bacteria impacting sorghum responses to drought using multi-scale and multi-system microbiome comparisons, The ISME Journal (2022). DOI: 10.1038/s41396-022-01245-4

    Jeffrey C Berry et al, Increased signal-to-noise ratios within experimental field trials by regressing spatially distributed soil properties as principal components, eLife (2022). DOI: 10.7554/eLife.70056

    Provided by Donald Danforth Plant Science Center

    Citation: Multi-scale research uncovers microbes that affect sorghum drought response (2022, August 23) retrieved 18 September 2022 from https://phys.org/news/2022-08-multi-scale-uncovers-microbes-affect-sorghum.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025

    Best spotting scopes in 2025 for birdspotting and wildlife watching

    July 17, 2025

    How human eggs stay fresh for decades

    July 16, 2025
    popular posts

    Emissions tied to the international trade of agricultural goods are

    6 Reflective Memoirs for Fans of Joan Didion

    Win a Trip to See Disturbed and Three Days Grace in Concert

    21 Reasons Why the Bucket Bag Is Still Going Strong

    Wildfire smoke in North America could be creating clouds over

    Inside Kendall Jenner and Devin Booker’s Efforts to Repair Their

    Rey Skywalker Star Wars Movie Detailed by Lucasfilm President

    Categories
    • Books (3,296)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,456)
    • Interviews (43)
    • Movies (2,595)
    • Music (2,874)
    • News (155)
    • Politics (2)
    • Science (4,445)
    • Technology (2,588)
    • Television (3,318)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT