Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Should Machines Replace Mathematicians?
    Science

    Should Machines Replace Mathematicians?

    By AdminJuly 16, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Pure mathematics fascinates me, precisely because it is so inaccessible. I envision it as a remote, chilly, perilous realm, like Antarctica’s Sentinel Range. The hardy souls who scale the heights of mathematics seem superhuman.

    I once asked André Weil, a legendary climber of mathematical peaks, if it bothered him that few people knew of his accomplishments in number theory and algebraic geometry, and fewer still understood them. He seemed puzzled by the question. No, he replied, “that makes it more exciting.” In his autobiography, Weil says his work transports him into “a state of lucid exaltation in which one thought succeeds another as if miraculously.”

    Perhaps because I romanticize mathematicians, I’m troubled by the thought that machines might replace them. I broached this possibility in “The Death of Proof,” published in the October 1993 Scientific American. In response to the growing complexity of mathematics, I reported, mathematicians were becoming increasingly reliant on computers. I asked, “Will the great mathematicians of the next century be made of silicon?”

    Mathematicians are still giving me grief about that article, even as the trends I described have continued. Anthony Bordg, a mathematician at the University of Cambridge, worries that his field could face a “replication crisis” like that plaguing scientific research. Mathematicians, Bordg notes in The Mathematical Intelligencer, sometimes accept a proof not because they have checked it, step by step, but because they trust the proof’s methods and author.

    Given the “increasing difficulty in checking the correctness of mathematical arguments,” Bordg says, old-fashioned peer review may no longer be sufficient. Prominent mathematicians have published “proofs” so novel and elaborate that even specialists in the relevant mathematics can’t verify them. Take a 2012 proof in which Shinichi Mochizuki claims to have proved the ABC conjecture, a problem in number theory. Over the past decade, mathematicians have organized conferences to determine whether Mochizuki’s proof is true—in vain. Some accept it, others don’t.

    Bordg suggests that computerized “proof assistants” will help validate proofs. Researchers at Microsoft have already invented an “interactive theorem prover” called Lean that can check proofs and even propose improvements—much as word-processing programs check our prose for errors and finish sentences for us. Lean is linked to a database of established results. New mathematical work must be laboriously translated into a language that Lean recognizes. But souped up with artificial intelligence, programs such as Lean could eventually “discover new mathematics and find new solutions to old problems,” according to a report in Quanta Magazine.

    Some mathematicians welcome the “digitization” of mathematics, which would facilitate computer verification and make mathematics more trustworthy. Others, such as Michael Harris, a mathematician at Columbia, are ambivalent. Advances in computer-aided mathematics, Harris says, raise a profound question: what is the purpose of mathematics? Harris sees mathematics as “a free, creative activity” that, like art, is pursued for its own sake, for the sheer joy of discovery and insight.

    Harris isn’t opposed to the mechanization of mathematics per se. In a recent article in Pour La Science, the French edition of Scientific American (see his partial translation here), Harris points out that mathematicians have used mechanical devices, such as the abacus, for millennia. And mathematicians, after all, invented the computer.

    But Harris worries that tools such as Lean will encourage a “stunted vision” of mathematics as an economic commodity or product rather than “a way of being human.” After all, funders of mathematical research like Google and the National Security Agency value mathematics primarily for its applications. As Harris puts it, mathematics is “indispensable for engineering, technology, record keeping, and any activity that involves predicting the future.”

    We value science for its applications, too. Sentimental science writing, including mine, implies that science’s purpose is insight into nature. In the modern era, however, science’s primary goal is power. Science helps us manipulate nature for various ends: to extend our lives, to enrich and entertain us, to boost the economy, to defeat our enemies. Modern physics, to most of us, is unintelligible, but who cares when physics gives us smartphones and hydrogen bombs?

    Physicists often adopt a utilitarian mindset, exemplified by the slogan “Shut up and calculate!” That is what professors supposedly tell students baffled by quantum mechanics. The message is that students should apply quantum formulas—for example, by building quantum computers—without worrying about their meaning. Stephen Hawking and Martin Rees have predicted that artificial intelligence will play an increasing role in physics. Wouldn’t it be funny if a quantum AI finds the long-sought unified theory of physics, but not even brilliant string theorist Edward Witten understands it?

    The mechanization of knowledge brings to mind the Chinese room experiment. In this famous philosophical argument, questions written in Chinese are fed to a man in a room. Although the man doesn’t understand Chinese, he has a manual that tells him how to respond to one string of Chinese characters with another string, which represents an appropriate answer to the question. In this way, the man in the room mimics understanding of Chinese.

    Philosopher John Searle intended the Chinese room experiment as a critique of the claim that machines can think. Searle likens computers to the man in the room, mindlessly processing symbols without knowing what they mean. The more mathematicians and scientists rely on machines for doing their work, the more they resemble the man in the Chinese room.

    When I raised the specter of artificial mathematicians a few years ago, Scott Aaronson, whose work spans computer science, mathematics and physics, chided me. “It’s conceivable that someday,” Aaronson said, “computers will replace humans at all aspects of mathematical research—but it’s also conceivable that, by the time they can do that, they’ll be able to replace humans at music and science journalism and everything else!” Wait, science journalism? Never!

    By the way, the question asked by my headline “Should Machines Replace Mathematicians?” is arguably beside the point, because it implies that mathematicians have a choice. A better question is whether machines can replace mathematicians. I’m skeptical of some claims made for artificial intelligence. But given the powerful forces behind automatization, if machines can replace mathematicians, they probably will, just as they are replacing drivers, bank tellers, travel agents, cashiers and other workers. Mathematicians’ wishes, such as their desire to pursue truth purely for its own sake, might be moot.

    In the future, mathematics might resemble not a remote mountain range but a factory in which robots assemble cars. A few human technicians roam the factory floor, making sure the robots are working properly, but the robots do all the heavy lifting. Meanwhile, the human overlords who own the factories—and possibly the future of math—keep getting richer and more powerful.

    This is an opinion and analysis article, and the views expressed by the author or authors are not necessarily those of Scientific American.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Using drones to safeguard our forests

    July 20, 2025

    Best sleep trackers 2025: From smart rings to Garmin watches

    July 20, 2025

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025
    popular posts

    The Fury: Recap, Summary & Spoilers

    DJ Khaled Pays Tribute to His ‘Brother’ Takeoff at Soundstorm

    Interview with K.T. Blakemore, Author of The Good Time Girls

    Bookish Barware for Your Next Book Club Meeting

    The James Webb Space Telescope

    9 of the Best Recent Epic Fantasy Series

    Rihanna’s Pregnancy Style | PS Fashion

    Categories
    • Books (3,299)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,458)
    • Interviews (43)
    • Movies (2,598)
    • Music (2,877)
    • News (155)
    • Politics (2)
    • Science (4,448)
    • Technology (2,591)
    • Television (3,321)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT