Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»What Are Neutrinos, and How Can We Measure Their Mass?
    Science

    What Are Neutrinos, and How Can We Measure Their Mass?

    By AdminJuly 8, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Of all the elementary particles in the universe, neutrinos may be the strangest. Sometimes known as “ghost particles,” these mysterious little packets of energy have no electrical charge, have almost no mass and come in at least three distinct varieties. New research is bringing science closer than ever to understanding the nature of neutrinos, from their size to their fundamental properties.

    Neutrinos are mind-bogglingly tiny. With a mass of less than 0.8 electron volt each, they are “hundreds of thousands of times lighter than the next lightest particle, which is the electron,” says Kathrin Valerius, an astroparticle researcher at Germany’s Karlsruhe Institute of Technology.

    They’re also ubiquitous. Tens of trillions of neutrinos pass through your body every second, originating mostly from the sun. But because of their small size and lack of charge, they rarely interact with your tissues—or anything else. “In your entire lifetime, if one neutrino interacts with you, then you’re lucky,” says experimental particle physicist Sowjanya Gollapinni of Los Alamos National Laboratory.

    Theoretical physicists still know remarkably little about neutrinos, despite the fact that they have been aware of their existence for nearly a century. In 1930 renowned physicist Wolfgang Pauli was puzzling over a seemingly impossible conundrum. Over multiple experiments, Pauli’s contemporaries had noticed an accounting error when observing beta decay, a process by which certain radioactive atoms break down. Rather than being emitted as electrons, a small fraction of the decaying atom’s energy had apparently vanished.

    This observation broke the the first law of thermodynamics, which states that energy cannot be created or destroyed. So Pauli proposed what he described as a “desperate remedy”: a new type of small, chargeless fundamental particle that was emitted alongside the electrons and accounted for the missing energy. The idea of the neutrino was born.

    Pauli’s neutral particle was at last confirmed in 1956 in an experiment that proved its existence—but not its size. Theory predicted that neutrinos would be completely massless.

    But in 2015 Takaaki Kajita of the University of Tokyo and Arthur McDonald of Queen’s University in Ontario won the Nobel Prize in Physics for research that proved the particles do actually have mass—though it did not reveal how much. In the mid-2000s the Mainz Neutrino Mass Experiment in Germany had set the upper limit of a neutrino’s mass at 2.3 electron volts. And in early 2022 data from the Karlsruhe Tritium Neutrino Experiment (KATRIN) in Germany .

    Such a precise measurement requires very sensitive—and very large—equipment. KATRIN’s 200-metric-ton spectrometer and 70 meters of ultra-high-vacuum tubing are capable of reaching temperatures as low as -270.15 degrees Celsius and as high as 250 degrees C, allowing researchers to detect billions of particles. The extreme low temperatures keep highly heat-sensitive supermagnets cold enough to generate a strong magnetic field that allows detectors to catch individual particles. The experiment switches to high temperatures when it needs cleaning. Valerius, who works on the project, describes it as “a big pizza oven.”

    Even this setup can’t detect the elusive ghost particles directly, however. Instead the spectrometer measures the energy of electrons that are released alongside neutrinos by radioactive hydrogen as it decays. The maximum energy of these electrons is well documented. Once the scientists record the total energy from this experiment, it is simply a matter of subtracting out the electron’s energy: whatever is left over belongs to the neutrinos.

    Researchers are currently developing new experiments to further our understanding of neutrinos. One of them, dubbed the Deep Underground Neutrino Experiment, or DUNE, aims to understand another mysterious property of neutrinos: how they oscillate, or change type.

    Neutrinos come in three “flavors”: electron, muon and tau. But these identities aren’t fixed. “If a neutrino is born as a certain flavor, as it travels, it can morph into other flavors,” explains Gollapinni, who is part of the DUNE collaboration. “It’s like changing your identity.” For example, some electron neutrinos from the sun turn into muon and tau neutrinos by the time they reach Earth. In order to understand why and how this change occurs, DUNE will observe a beam of neutrinos as it travels some 800 miles underground, from the experiment’s headquarters at Fermi National Accelerator Laboratory in Batavia, Ill., to the Sanford Underground Research Laboratory in South Dakota.

    Researchers hope that experiments such as these will help to chip away at other major cosmological questions, such as the nature of dark matter (which might just be a fourth, not yet detected flavor of neutrino called a “sterile neutrino”), how black holes form or even the origin of matter itself. “The KATRIN collaboration has done a great job,” says Anthony Ezeribe, a particle physicist at the University of Sheffield in England, who is also part of DUNE, but “there is still work to be done.”

    Valerius agrees. And like many neutrino scientists, she is excited by the vast research potential this tiny particle holds. “Our understanding, or lack of understanding, of the neutrino is not complete,” she says. “We don’t even know yet what we don’t know.”

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Tips for Independence Day and summer heat

    July 1, 2025

    Thimerosal carries no health risks and is almost never used anyway. So why are anti-vaxxers obsessed with it?

    June 30, 2025

    Altered gut microbiome linked to fertility issues in people with PCOS

    June 30, 2025

    Cold baths, climate shelters as Southern Europe heat wave intensifies

    June 29, 2025

    Roman army camp found in Netherlands, beyond the empire’s frontier

    June 29, 2025

    X-ray boosting fabric could make mammograms less painful

    June 28, 2025
    popular posts

    ‘Jeopardy!’: Wildcard Champion Remembers Competing in Alex Trebek’s Last Episode

    Missing review – underwhelming screenlife shlock

    The Super Mario Bros

    Captivating Exploration of Faith, History and Pursuit of Spiritual Identity

    The Black Friday supplement sale saves you 50% on vitamin

    New Books to Read in Literary Fiction

    Chloe Cherry Can Make Your Lips Look Juicy in a

    Categories
    • Books (3,260)
    • Cover Story (3)
    • Events (18)
    • Fashion (2,428)
    • Interviews (43)
    • Movies (2,559)
    • Music (2,837)
    • News (155)
    • Science (4,409)
    • Technology (2,552)
    • Television (3,281)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT