HomeScienceTransparency on demand: A novel process can render artificial materials

Transparency on demand: A novel process can render artificial materials


master mentalism tricks

Induced transparency: The precise control of the energy flow (indicated by glowing particles in the fog) makes the artificial material become entirely transparent for the optical signal. Credit: Andrea Steinfurth / University of Rostock

Space, the final frontier. The starship Enterprise pursues its mission to explore the galaxy, when all communication channels are suddenly cut off by an impenetrable nebula. In many episodes of the iconic TV series, the valiant crew must “tech the tech” and “science the science” within just 45 minutes of airtime in order to facilitate their escape from this or a similar predicament before the end credits roll. Despite spending a significantly longer time in their laboratories, a team of scientists from the University of Rostock has succeeded in developing an entirely new approach for the design of artificial materials that can transmit light signals without any distortions by means of precisely tuned flows of energy. They have published their results in Science Advances.

“When light spreads in an inhomogeneous medium, it undergoes scattering. This effect quickly transforms a compact, directed beam into a diffuse glow, and is familiar to all of us from summer clouds and autumn fog alike,” Professor Alexander Szameit of the Institute for Physics at the University of Rostock describes the starting point of his team’s considerations. Notably, it is the microscopic density distribution of a material that dictates the specifics of scattering. Szameit continues, “The fundamental idea of induced transparency is to take advantage of a much lesser-known optical property to clear a path for the beam, so to speak.”

This second property, known in the field of photonics under the arcane title of non-Hermiticity, describes the flow of energy, or, more precisely, the amplification and attenuation of light. Intuitively, the associated effects may seem undesirable—particularly the fading of a light beam due to absorption would seem highly counterproductive to the task of improving signal transmission. Nevertheless, non-Hermitian effects have become a key aspect of modern optics, and an entire field of research strives to harness the sophisticated interplay of losses and amplification for advanced functionalities.

“This approach opens up entirely new possibilities,” reports doctoral student Andrea Steinfurth, first author of the paper. In regard to a beam of light, it becomes possible to selectively amplify or dampen specific parts of a beam at the microscopic level to counteract any onset of degradation. To stay in the picture of the nebula, its light-scattering properties could be completely suppressed. “We are actively modifying a material to tailor it for the best possible transmission of a specific light signal,” Steinfurth explains. “To this end, the energy flow must be precisely controlled, so it can fit together with the material and the signal like pieces of a puzzle.” In close collaboration with partners from the Vienna University of Technology, the researchers in Rostock successfully tackled this challenge. In their experiments, they were able to recreate and observe the microscopic interactions of light signals with their newly developed active materials in networks of kilometer-long optical fibers.

In fact, induced transparency is just one of the fascinating possibilities that arise from these findings. If an object is truly to be made to vanish, the prevention of scattering is not enough. Instead, light waves must emerge behind it completely undisturbed. Yet, even in the vacuum of space, diffraction alone ensures that any signal will inevitably change its shape. “Our research provides the recipe for structuring a material in such a way that light beams pass as if neither the material, nor the very region of space it occupies, existed. Not even the fictitious cloaking devices of the Romulans can do that,” says co-author Dr. Matthias Heinrich, circling back to the final frontier of Star Trek.

The findings presented in this work represent a breakthrough in fundamental research on non-Hermitian photonics and provide new approaches for the active fine-tuning of sensitive optical systems, for example, sensors for medical use. Other potential applications include optical encryption and secure data transmission, as well as the synthesis of versatile artificial materials with tailored properties.

Reconfigurable silicon nanoantennas controlled by vectorial light field More information: Andrea Steinfurth et al, Observation of photonic constant-intensity waves and induced transparency in tailored non-Hermitian lattices, Science Advances (2022). DOI: 10.1126/sciadv.abl7412 Provided by University of Rostock

Citation: Transparency on demand: A novel process can render artificial materials transparent or even entirely invisible (2022, May 31) retrieved 25 June 2022 from https://phys.org/news/2022-05-transparency-demand-artificial-materials-transparent.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Read The Full Article Here


trick photography
Advertisingfutmillion

Popular posts

Hollywood Spotlight: Director Jon Frenkel Garcia
The Dutchman Cast: André Holland, Zazie Beetz & More Join
The Creator Reactions: Gareth Edwards’ Latest Is One of 2023’s
Company Paid Critics For Rotten Tomatoes Reviews
‘Fire Country’ Sneak Peek: Sharon Gets Honest With Vince During
Anna Paquin Reveals Health Issues Have Not ‘Been Easy’ as
Why X-Men 97 is the Greatest Reboot of All Time
The 50 Best Historical Dramas: ‘Shirley,’ ‘The Chosen’ & More
Streaking in Tongues’ “Einstein’s Napkin”
Greye is Back With New Album
Universal Dice’s “Curse”
Society of the Silver Cross’ “Wife of the Sea”
9 Boob Tapes That Work For All Busts, Shapes, and
Here’s Why Apple Cider Vinegar Is the Ingredient Your Hair
I Travel a Lot for Work—These Are the Useful Items
The Best Street Style Looks From the Fall 2023 Couture
Physician by Day, Vigilante by Night in This Action-Packed Cyberpunk
10 Of The Best New Children’s Books Out April 2024
Interview with James Ungurait, Author of I’m The Same
Child Psychologist and Mother Shares CBT Teaching Techniques That Work
Positive associations between premenstrual disorders and perinatal depression
Poem: ‘SnapShot, 1968’
What is the smallest animal on Earth?
Experimental weight loss pill seems to be more potent than
Killing TikTok
Killing TikTok
Comedy or Tragedy?
BYD Atto 3 Electric SUV With Blade Battery Technology Launched