Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»1st image of our galaxy’s ‘black hole heart’ unveiled
    Science

    1st image of our galaxy’s ‘black hole heart’ unveiled

    By AdminMay 17, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Astronomers have captured the first ever image of the colossal black hole at the center of our galaxy, providing the first direct evidence of the cosmic giant’s existence.

    Located 26,000 light-years away, Sagittarius A* is a gargantuan tear in space-time that is four million times the mass of our sun and 40 million miles (60 million kilometers) across. The image was captured by the Event Horizon Telescope (EHT), a network of eight synchronized radio telescopes placed in various locations around the world. 

    As not even light is able to escape the powerful gravitational pull of a black hole, it’s impossible to see Sagittarius A* itself except as the silhouette of a ring of fuzzy, warped light. This halo comes from the superheated, glowing matter swirling around the entrance to the cosmic monster’s maw at close to the speed of light. Once the slowly stripped and shredded plasma plunges over the black hole’s precipice, or event horizon, it is lost inside forever.

    Related: The universe may have been filled with supermassive black holes at the dawn of time

    “Our results are the strongest evidence to date that a black hole resides at the centre of our galaxy,” Ziri Younsi, an astrophysicist at University College London and an EHT collaborator, said in a statement. “This black hole is the glue that holds the galaxy together. It is key to our understanding of how the Milky Way formed and will evolve in the future.”

    Scientists have long thought that an enormous supermassive black hole must lurk at the center of our galaxy, its gravity tethering the Milky Way’s dust, gas, stars and planets in a loose orbit about it and causing stars closeby to circle around it rapidly. This new observation, which shows light being bent around the space-time-warping behemoth, puts their suspicions beyond all doubt.

    “We were stunned by how well the ring size agreed with predictions from Einstein’s theory of general relativity,” Geoffrey Bower, an EHT collaborator and astronomer at Academia Sinica, Taipei, said in a statement. “These unprecedented observations have greatly improved our understanding of what happens at the very center of our galaxy and offer new insights on how these giant black holes interact with their surroundings.”

    Einstein’s theory of general relativity describes how massive objects can warp the fabric of the universe, called space-time. Gravity, Einstein discovered, isn’t produced by an unseen force, but is simply our experience of space-time curving and distorting in the presence of matter and energy. Black holes are points in space where this warping effect becomes so strong that Einstein’s equations break down, causing not just all nearby matter but all nearby light to be sucked inside.

    The Event Horizon Telescope has captured the first image of Sgr A*, the supermassive black hole at the center of our galaxy. (Image credit: EHT Collaboration)

    To build a black hole, you have to start with a large star — one with a mass roughly five to 10 times that of the sun. As larger stars approach the ends of their lives, they start to fuse heavier and heavier elements, such as silicon or magnesium, inside their burning cores. But once this fusion process begins forming iron, the star is on a path to violent self-destruction. Iron takes in more energy to fuse than it gives out, causing the star to lose its ability to push out against the immense gravitational forces generated by its enormous mass. It collapses in on itself, packing first its core, and later all the matter close to it, into a point of infinitesimal dimensions and infinite density — a singularity. The star becomes a black hole, and beyond a boundary called the event horizon, nothing — not even light — can escape its gravitational pull.

    Exactly how black holes may grow to become supermassive in scale is still a mystery to scientists, although observations of the early universe suggest they could balloon to their enormous sizes by snacking on dense clouds of gas and merging with other black holes.

    The EHT captured the image, alongside the image of another supermassive black hole at the center of the M87 galaxy, back in 2017. The image of the M87 black hole was released in 2019, Live Science previously reported, but it took two more years of data analysis before the Milky Way one was ready.

    Part of the reason behind the delay is the vastly different sizes of the two supermassive black holes, which in turn affects the speeds that their plasma clouds whirl around their centers. The M87 black hole (M87*) is roughly a thousand times bigger than Sagittarius A*, weighing in at a jaw-dropping 6.5 billion times the mass of our sun, and its hot plasma takes days or even weeks to orbit it. The plasma of Sagittarius A*, by contrast, can whip around it in mere minutes.

    “This means the brightness and pattern of the gas around Sgr A* was changing rapidly as the EHT Collaboration was observing it — a bit like trying to take a clear picture of a puppy quickly chasing its tail,” Chi-kwan Chan, an EHT collaborator and astrophysicist at the University of Arizona, said in a statement.

    The imaging process was made even more challenging by the Earth’s location at the edge of the Milky Way, meaning the researchers had to use a supercomputer to filter out interference from the countless stars, gas and dust clouds strewn between us and Saggitarius A*. The final result is an image which looks very similar to the 2019 snapshot of M87*, even though the two black holes are themselves vastly different in scale. This is something the researchers attribute to the startling and persisting accuracy of Einstein’s general relativity equations.

    “We have two completely different types of galaxies and two very different black hole masses, but close to the edge of these black holes they look amazingly similar,” Sera Markoff, an EHT collaborator and astrophysicist at the University of Amsterdam in the Netherlands, said in a statement. “This tells us that general relativity governs these objects up close, and any differences we see further away must be due to differences in the material that surrounds the black holes.”

    Detailed analysis of the image has already enabled scientists to make some fascinating observations into our black hole’s nature. First, it’s wonky, sitting at a 30-degree angle to the rest of the galactic disk. It also appears to be dormant, making it unlike other black holes such as M87*, which suck in burning-hot material from nearby gas clouds or stars before slingshotting it back into space at near light speeds.

    The scientists will follow up with further analysis of both this image and the one of M87*, alongside capturing new and improved images. More images won’t just enable better comparisons between the black holes, but will also provide improved detail, allowing scientists to see how the same black holes change over time and what goes on around their event horizons. This could not only give us a better understanding of how our universe formed, but also help in the search for hints as to where Einstein’s equations could give way to undiscovered physics.

    The researchers published their results in a series of papers in the journal The Astrophysical Journal Letters.

    Originally published on Live Science.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Solar drone with wingspan wider than jumbo jet could fly for months

    July 27, 2025

    Hidden black and white feathers found to intensify blue and yellow bird plumage

    July 26, 2025

    Science news this week: Wolves help restore trees in Yellowstone and the largest interstellar object ever seen

    July 26, 2025

    Major carbon sink may have vanished for a second year in a row

    July 25, 2025

    Clues for dinosaurs’ diets found in the chemistry of their fossil teeth

    July 25, 2025

    3I/ATLAS is 7 miles wide — the largest interstellar object ever seen — new photos from Vera C. Rubin Observatory reveal

    July 24, 2025
    popular posts

    Linkin Park’s Emily Armstrong + Phoenix on Prepping For Big Shows

    Nanobody neutralizes deadly Nipah and Hendra viruses in lab tests

    Evil Season 3 Interviews: The Cast and Creators Break Down

    Mathematicians find 12,000 solutions for fiendish three-body problem

    Days of Our Lives Spoilers For The Week Of 2-24-25 Suggest A Predictable New Romance Just As Fake Rafe Gets Caught

    Elio Quest “City”

    Instagram Testing a Feature to Add Songs to Your Profile:

    Categories
    • Books (3,312)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,466)
    • Interviews (43)
    • Movies (2,611)
    • Music (2,890)
    • News (155)
    • Politics (3)
    • Science (4,461)
    • Technology (2,605)
    • Television (3,335)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT